Affine self-similar solutions of the affine curve shortening flow I: The degenerate case
نویسندگان
چکیده
منابع مشابه
Grid peeling and the affine curve-shortening flow
In this paper we study an experimentally-observed connection between two seemingly unrelated processes, one from computational geometry and the other from differential geometry. The first one (which we call grid peeling) is the convex-layer decomposition of subsets G ⊂ Z of the integer grid, previously studied for the particular case G = {1, . . . ,m} by Har-Peled and Lidický (2013). The second...
متن کاملAncient Solutions of the Affine Normal Flow
We construct noncompact solutions to the affine normal flow of hypersurfaces, and show that all ancient solutions must be either ellipsoids (shrinking solitons) or paraboloids (translating solitons). We also provide a new proof of the existence of a hyperbolic affine sphere asymptotic to the boundary of a convex cone containing no lines, which is originally due to Cheng-Yau. The main techniques...
متن کاملAffine and degenerate affine BMW algebras: The center
The degenerate affine and affine BMW algebras arise naturally in the context of SchurWeyl duality for orthogonal and symplectic Lie algebras and quantum groups, respectively. Cyclotomic BMW algebras, affine Hecke algebras, cyclotomic Hecke algebras, and their degenerate versions are quotients. In this paper the theory is unified by treating the orthogonal and symplectic cases simultaneously; we...
متن کاملOn Analytical Study of Self-Affine Maps
Self-affine maps were successfully used for edge detection, image segmentation, and contour extraction. They belong to the general category of patch-based methods. Particularly, each self-affine map is defined by one pair of patches in the image domain. By minimizing the difference between these patches, the optimal translation vector of the self-affine map is obtained. Almost all image process...
متن کاملThe Solutions of Affine and Conformal Affine Toda Field Theories
We give new formulations of the solutions of the field equations of the affine Toda and conformal affine Toda theories on a cylinder and two-dimensional Minkowski space-time. These solutions are parameterised in terms of initial data and the resulting covariant phase spaces are diffeomorphic to the Hamiltonian ones. We derive the fundamental Poisson brackets of the parameters of the solutions a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2021
ISSN: 0022-0396
DOI: 10.1016/j.jde.2021.03.029